Group Extensions of Gibbs-markov Maps

نویسندگان

  • Jon Aaronson
  • Manfred Denker
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Analysis of Resting-State fMRI by Hierarchical Markov Random Fields

Identifying functional networks from resting-state functional MRI is a challenging task, especially for multiple subjects. Most current studies estimate the networks in a sequential approach, i.e., they identify each individual subject's network independently to other subjects, and then estimate the group network from the subjects networks. This one-way flow of information prevents one subject'...

متن کامل

Local Limit Theorems for Gibbs{markov Maps

We prove conditional local limit theorems for Gibbs-Markov processes whose marginals are in the domain of attraction of a stable law with order in (0;2). c 1996.

متن کامل

A Multifractal Analysis of Gibbs Measures for Conformal Expanding Maps and Markov Moran Geometric Constructions

We establish the complete multifractal formalism for Gibbs measures for confor-mal expanding maps and Markov Moran geometric constructions. Examples include Markov maps of an interval, hyperbolic Julia sets, and conformal toral endomorphisms. This paper describes the multifractal analysis of measures invariant under dynamical systems. The concept of a multifractal analysis was suggested by seve...

متن کامل

Reenements of the Gibbs Conditioning Principle

Reenements of Sanov's large deviations theorem lead via Csiszz ar's information theoretic identity to reenements of the Gibbs conditioning principle which are valid for blocks whose length increase with the length of the conditioning sequence. Sharp bounds on the growth of the block length with the length of the conditioning sequence are derived. Extensions of Csiszz ar's triangle inequality an...

متن کامل

A functional network estimation method of resting-state fMRI using a hierarchical Markov random field

We propose a hierarchical Markov random field model for estimating both group and subject functional networks simultaneously. The model takes into account the within-subject spatial coherence as well as the between-subject consistency of the network label maps. The statistical dependency between group and subject networks acts as a regularization, which helps the network estimation on both laye...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999